In the old days, star-pattern tightening using torque wrenches was the only way lug nuts were tightened. Not any more. Today, it is throw the tire and wheel over the lugs, hand start the five lug nuts, then use an air wrench in a once-around circle pattern, and you are done.
Doing this, the first few wheel lugs lock the rotor into location while the last few wheel lugs pre-load the rotor, which is like slightly bending a spring. Even worse, even if perfectly tightened to 100 ft-lbs, the last few lugs are false readings. Some of the torque is absorbed in flexing the rotor, not tightening the lug. This is almost guaranteed to cause uneven rotor wear (incorrectly called warped rotors), which results in the tell-tale pedal pulsations after just a few thousand miles.
The unevenly torqued rotor, even with the correct amount of torque, will not be bent when the rotor is cold. However, as the rotor heats up in normal use, it will expand unevenly. The most uneven area will, of course, be near the first tightened and last tightened lugs. As the rotor heats up and expands, a runout will be caused, i.e., a high spot on one side and a high spot on the other side. These high spots will come into intermittent contact with the retracted pads during normal driving, i.e., without brake pedal pressure.
As this happens, the semi-metallic pad used with police cars will grind away the high spots on either side. On the other hand, the ceramic pad used with retail cars will transfer material to the high spots. In just a few thousand miles, the rotor will have a significant thickness variation, either from worn away rotor or material transfer from the pad. Rotor thickness variation causes brake pedal pulsation and steering wheel vibration!