Rubber
Rubber exhibits unique physical and chemical properties. Rubber's stress-strain behavior exhibits the Mullins effect, the Payne effect and is often modeled as hyperelastic. Rubber strain crystallizes.
Owing to the presence of a double bond in each and every repeat unit, natural rubber is sensitive to ozone cracking
Aside from a few natural product impurities, natural rubber is essentially a polymer of isoprene units, a hydrocarbon diene monomer. Synthetic rubber can be made as a polymer of isoprene or various other monomers. The material properties of natural rubber make it an elastomer and a thermoplastic. However it should be noted that as the rubber is vulcanized it will turn into a thermoset. Most rubber in everyday use is vulcanized to a point where it shares properties of both; i.e., if it is heated and cooled, it is degraded but not destroyed.
Delrin
Properties
The polymer shares common characteristics with other synthetic polymers such as low density (1.4 - 1.5 g/cm3), and ease of moulding when the molecular weight is low enough. It is a semi-crystalline polymer (75-85% crystalline) with a melting point of 175 C as a homopolymer. A copolymer version has slightly lower melting point of 163 C. It is a tough material with a very low coefficient of friction. However, it is suceptible to polymer degradation catalysed by acids, which is why both polymer types are stabilised. In the case of the homopolymer, it has chain end groups which resist depolymerization. With the copolymer, the second unit is a cyclic ether which resist chain cleavage. It is also sensitive to oxidation, and an anti-oxidant is normally added to moulding grades of the material.